Estimates for L-functions in the Critical Strip Under GRH with Effective Applications

نویسندگان

چکیده

Abstract Assuming the generalized Riemann hypothesis, we provide explicit upper bounds for moduli of $$\log {\mathcal {L}(s)}$$ log L ( s ) and $$\mathcal {L}'(s)/\mathcal {L}(s)$$ ′ / in neighbourhood 1-line when are Riemann, Dirichlet Dedekind zeta-functions. To do this, generalize Littlewood’s well-known conditional result to functions Selberg class with a polynomial Euler product, which also establish suitable convexity estimate. As an application, effective estimates Mertens function.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artin L - Functions in the Critical Strip

This paper gives a method for computing values of certain nonabelian Artin ¿-functions in the complex plane. These Artin ¿-functions are attached to irreducible characters of degree 2 of Galois groups of certain normal extensions K of Q. These fields K are the ones for which G = Gal(.KyQ) has an abelian subgroup A of index 2, whose fixed field Q(\/d) is complex, and such that there is a a S G —...

متن کامل

On Computing Artin L - Functions in the Critical Strip

This paper gives a method for computing values of certain nonabelian Artin ¿-functions in the complex plane. These Artin ¿-functions are attached to irreducible characters of degree 2 of Galois groups of certain normal extensions K of Q. These fields K are the ones for which G = Gal(.KyQ) has an abelian subgroup A of index 2, whose fixed field Q(\/d) is complex, and such that there is a a S G —...

متن کامل

Lower Bounds for L-functions at the Edge of the Critical Strip

(Under the Riemann Hypothesis the stronger bound |ζ(1 + it)| ≥ c log log t holds.) From a modern point of view, the method of de la Vallée Poussin is based on Rankin-Selberg convolutions and a positivity argument (an effective version of Landau’s Lemma – see [HL94, Appendix]). It can be applied to any Rankin-Selberg L-function L(s, π1 ⊗ π2), provided that one of the πi’s is self-dual (cf. [Sar0...

متن کامل

Application of the Norm Estimates for Univalence of Analytic Functions

By using norm estimates of the pre-Schwarzian derivatives for certain family of analytic functions, we shall give simple sufficient conditions for univalence of analytic functions.

متن کامل

Distribution of Values of L-functions at the Edge of the Critical Strip

Abstract. We prove several results on the distribution of values of L-functions at the edge of the critical strip, by constructing and studying a large class of random Euler products. Among new applications, we provide a precise estimate for the distribution of the values at s = 1 of the family of k-th symmetric power L-functions of primitive cusp forms of weight 2 in the level aspect (assuming...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mediterranean Journal of Mathematics

سال: 2023

ISSN: ['1660-5454', '1660-5446']

DOI: https://doi.org/10.1007/s00009-023-02289-2